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ABSTRACT 

In this  paper  we s t udy  2-graded polynomia l  identities.  We describe bases  

of these  identi t ies satisfied by the  ma t r ix  a lgebra  of order two M 2 ( K ) ,  

by the  algebra MI , I (G) ,  and  by the  algebra G ®K G. Here K is an  

a rb i t ra ry  infinite field of  character is t ic  not  2, G s t ands  for the  G r a s s m a n n  

(or exterior) a lgebra of an  infinite d imensional  vector  space over K ,  and  

MI , I (G )  is the  algebra of all 2 x 2 matr ices  over G whose entries on the  

ma in  diagonal  are even e lements  of  G, and  those  on the  second diagonal  

are odd  e lements  of G. T he  gradings  on these  three  algebras are supposed  

to be the  standaa'd ones. 

It t u rns  out  t ha t  the  graded identi t ies of  these  three  algebras are closely 

related,  and  fu r the rmore  MI,1 (G) and  G ® G sat isfy the  same  2-graded 

identi t ies provided tha t  char K = 0. W h e n  c h a r / 4  = p > 2, t hen  the  

a lgebra  G ® G satisfies some addi t ional  2-graded identi t ies t ha t  are not  

identi t ies for MI , I (G) .  T he  m e t h o d s  used in the  proofs are based on 

appropr ia te  cons t ruc t ions  for the  corresponding relatively free algebras,  

on combinator ia l  propert ies  of  pe rmuta t i ons ,  and  on a version of Specht ' s  

c o m m u t a t o r  reduct ion.  We hope t h a t  th is  paper  is a s tep towards  the  

descr ipt ion of the  ordinary  identi t ies satisfied by the  algebras  G ® G and  

MI , I (G )  over an  infinite field of posit ive characteris t ic .  Note  t ha t  in 

character is t ic  0 such  a descript ion was given in [12] and  in [10]. 
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I n t r o d u c t i o n  

The Z2-graded algebras and the polynomial identities satisfied by such algebras 

are an important ingredient in the structure theory of PI algebras; see, for ex- 

ample, [10], [1]. It is known that every non-trivial verbally prime T-ideal in the 

free associative algebra over a field K,  char K = 0, is the ideal of identities in 

some of the following algebras. First come the matrix algebras M,~(K) of or- 

der n, then the matrix algebras Mn(G) of order n over the Grassmann algebra 

G of an infinite dimensional K-vector space. The third type of verbally prime 

T-ideals consists of the identities satisfied by the algebras Mk,l(G). These al- 

gebras are subalgebras of M,~(G) for n = k + l, they consist of the matrices of 

( A B )  where A E Mk(Go), D c ~(Go), k > l, and B c Mkx,(G1), type C 

C E Mlxk(G1). Here we consider Go as the subalgebra of G generated by all 

elements having even length, and G1 the subspace of G spanned by the elements 

of odd length, G = Go @G1. By length of an element g of G we mean the number 

t i f g  = eile~ ""eit where il < i2 < "-" < it and {ei[ i C N} are a K-basis for 

the underlying vector space, with multiplication eiej = -ejei, i 5~ j, and e 2 -- 0. 

Even in characteristic 0 little is known about the concrete polynomial identities 

satisfied by these algebras except for the ones satisfied by G, M2(K), and G ® G 

and MI,I(G). The picture becomes even more unclear when char K = p > 0. In 

the latter case a basis of the identities for the algebra G is known ([4], and if 

unavailable, see for a brief survey [8]). Recently, a finite basis of the identities of 

M2(K) was described when c h a r g  = p > 2 and K is infinite ([11]). 

Hence one is led to study other types of polynomial identities such as weak 

identities, identities with trace, graded and/or  with involution etc. Thus, for 

example, the trace identities of the algebras Mn(K) and of Mk, l o v e r  a field of 

characteristic 0 were described by Razmyslov and by Procesi; see [14], [13]. The 2- 

graded identities of the algebras M2(K) and MI,I(G) over a field of characteristic 

0 were described in [5], and the n-graded identities of M,~(K) in [18]. Let us 

mention that the information about the graded identities in M2(K) obtained by 

O. M. Di Vincenzo in [5] allowed him to give a new proof of the "standard" fact 

that the algebras G®G and MI,I(G) satisfy the same polynomial identities when 

the base field is of characteristic 0. (Note that otherwise this fact follows from 

Kemer's classification, see [10].) The interest in the study of 2-graded identities 

in algebras over a field of characteristic 0 is justified by the relationship between 

the graded and ordinary polynomial identities which is one of the key components 

in the structure theory of T-ideals developed by A. Kemer ([10], Theorem 1.1, [1], 

Theorem 7). This relationship is the following. If A is an (associative) algebra 
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over a field of characteristic 0, then it satisfies the same identities as the algebra 

B0 ® Go @ B1 ® G1 does where B = B0 G B1 is a finitely generated 2-graded 

algebra and G -- Go • G1 is the Grassmann algebra with its natural grading. 

Although in positive characteristic there does not exist such a theorem, the 

graded identities are still of interest; see, for example, [2, 3]. 

In this paper we determine bases of the 2-graded polynomial identities sat- 

isfied by the algebras M2(K), MI,I(G) and G ® G, over an infinite field K of 

characteristic p ¢ 2. Furthermore, we show that the last two algebras satisfy the 

same 2-graded identities when char K = 0, and when char K = p > 2 the latter 

algebra satisfies some more 2-graded identities. In order to obtain these results 

we construct appropriate models for the respective relatively free (2-graded) al- 

gebras. The description of the 2-graded identities satisfied by M 2 ( K )  uses some 

ideas from [5]. Furthermore, we make use of various combinatorial techniques 

and of certain graded variant of the Specht's reduction to commutator polyno- 

mial identities. The bases for the 2-graded identities of the algebras M2(K) and 

of MI, I (G)  are exactly the same as in the case of characteristic 0. (Note that the 

bases of the ordinary identities satisfied by the algebras M 1 j ( G )  and G ® G over 

infinite fields of characteristic p > 2 are still unknown.) 

The paper is organized as follows. The next section contains mainly definitions 

and preliminary information needed to follow the exposition. Section 2 deals with 

the 2-graded identities of the algebra M2 (K). We prove that the graded identities 

of M2(K) follow from two identities, namely from YlY2 - Y 2 Y l  and z l z 2 z 3 -  z3z2zl 

for Yi even and zi odd variables. In Section 3 we describe the 2-graded identities 

satisfied by MI,I(G), and finally in Section 4 we study these of G ® G. It turns 

out that the graded identities of MI,I(G) are consequences of YlY2 - Y2Yl and of 

zlz2z3 + z3z2zl. These of G ® G follow from yly2 - YuYl, ZlZ2Z3 + z3z2zl,  and if 

char K = p > 2 one adds the identity y~zl - zly~. Note that the last identity is 

not satisfied by M1,1 (G). 

We hope that this paper will be a step towards the description of the ordinary 

identities satisfied by the algebras MI,I (G)  and G ® G over fields of positive 

characteristic, and thus will contribute to better  understanding of the structure 

of the T-ideals over such fields. 

1. P r e l i m i n a r i e s  

Throughout,  we consider unitary associative algebras over a fixed infinite field K 

of characteristic p ¢ 2; all tensor products are over K (and hence we shall omit 

the subscript for the tensor products). Let Y = {Yl, Y2,.. -} and Z = {zl, z2, . . .}  
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be two disjoint sets of symbols and X = Y t5 Z. Denote by K ( X )  the free 

associative algebra that is freely generated over K by the set X. An algebra A 

is called 2-graded (or superalgebra) if A = A0 @ A1 where Ao is a subalgebra of 

A and A1 a subspace, and furthermore, AiAj g Ai+j where we sum the indices 

modulo 2. Let G be the Grassmann (or exterior) algebra of a vector space V 

with a basis el, e2, • . . .  Then G is spanned by 1 and by the products eilei2 .. "elk 
where il < i2 < - "  < ik, k = 1, 2 , . . . ,  and the multiplication in G is induced 

2 = 0. Hence G = Go@G1,  where Go is by eiej = -ejei  when i ¢ j ,  and e i 
the subspace of G spanned by all monomials in the ei's of even length, and G1 

is the subspace spanned by all elements of odd length. Therefore G becomes a 

2-graded algebra, and Go is the centre of G. Obviously one has ab = -ba for 

all a, b • G1. One may introduce various gradings on an algebra. We fix the 

following gradings on M2(K), MI,I(G) and on G®G, and we shall refer to them 

as to the standard gradings (or simply gradings). 

These are the following: 

M2(K) = Ao @ A1, 

for a, b, c, d • K; 

MI,I(G) = Bo @ B1, .o (o o), (°c B I : {  0 }' 

for a, d • Go, b, c • G1; 

G ® G = (Go ® Go • G~ ® G1) $ (Go ® G1 e G1 ® Go). 

Let f be a monomial in the free algebra K(X) .  We say that f is even if it 

contains an even number of entries from Z, i.e., if its degree with respect to 

the symbols in Z is even. Otherwise f is called odd. The span of all even 

(odd) monomials is denoted by K(X)o  (respectively by K(X) I ) .  Therefore 

K ( X )  = K(X)o  @ K ( X ) I  becomes a 2-graded algebra. It is the free 2-graded 

algebra, and its elements will be called polynomials. If A = Ao ® A1 is 2-graded 

algebra and f (Yl , . - - ,  Ym, z l , . . . ,  Zn) E K(X) ,  then f is graded identity for A if 

f ( a l , . . . ,  a,~, b l , . . . ,  bn) = 0 for all ai C Ao, bj • A1. 

The set T2(A) of all graded identities of A is an ideal of K(X) .  It is called 

the T2-ideal of A. It can be easily verified that  T2(A) is closed under 2-graded 

endomorphisms of A (i.e., under endomorphisms that preserve the even and the 

odd parts of A). If g • K ( X )  we shall say that  g is T2-consequence of f (or 

that  g follows from f as graded identity) if g belongs to the T2-ideal generated 
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in K ( X )  by f .  Here and in what follows, T2-ideal means the ideal of 2-graded 

identities satisfied by some 2-graded algebra. 

The field K is infinite. Hence every polynomial f C K ( X )  is equivalent 

as graded identity to a finite collection of multihomogeneous graded identities. 

Therefore we may and shall consider multihomogeneous polynomials only. 

For a, b E K ( X )  we denote as [a, b] = ab - ba the commutator of a and b. The 

higher commutators are assumed left normed, i.e., we define them inductively by 

[al  . . . .  , a n - l , a m ]  = n > 3. 

Denote as B(X)  the subalgebra of K(X)  generated by all commutators 

[Xil,Xi2,... ,xi~], n = 2, 3, . . . .  It is well known that if T is a T-ideal in K(X)  

(i.e., T is the ideal of identities of some unitary algebra, or equivalently, T is 

stable under all endomorphisms of the algebra K(X)) ,  then T is generated as 

T-ideal by its elements from B(X).  In other words T = (T N B(X)} T. This fact 

was first observed by W. Specht [17]. Though in [17] this result was proved for 

multilinear polynomials and, formally speaking, in characteristic 0 only, the same 

method of proof yields the result in every characteristic provided the field is infi- 

nite; see, for example, [7], pp. 42-43, Proposition 4.3.3. We need a modification 

of this statement in the case of graded identities. 

LEMMA 1: I f  f ( y l , . . . , y m ,  Z l , . . . ,Zn)  E K ( X )  is a muttihomogeneous polyno- 

mial, then it is equivalent as graded identity to a finite collection of graded 

identities such that the even variables Yl, . . . ,  Ym appear in any one of them in 

commutators only. 

Proof: The proof repeats verbatim that of [7], Proposition 4.3.3. Note that one 

can substitute xi + 1 for xi only in the cases xi C Y since 1 C K ( X )  belongs to 

g(X)o. 
We denote as B2 = B2(X) the set of the polynomials f in K ( X )  such that 

every even variable Yi is in commutators in the expansion of f .  

COROLLARY 2: Let T be T2-ideal in K(X) .  Then T is generated as T2-ideal by 

the set T N B 2. 

2. The graded identities of  M2(K) 

In this section we describe the ideal of the graded identities satisfied by the 

algebra M2 (K) with respect to the standard grading. Our method is similar to 

that of [5]. 
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Let Gen(M2(K)) be the generic matrix algebra of order 2 generated by some 

countable set of matrices 
1) x?) 

Ai tx?) x?) )  

Here x (j) i > 1, 1 < j < 4 are commuting variables. It is well known that 

Gen(M2(K)) is isomorphic to the relatively free algebra in the variety of algebras 

determined by the matrix algebra of order two. 
_.(J) 

Denote by F(M2(K)) the subalgebra of M2(K[y~J),z~ I i >_ 1, j  = 1,2]) 

generated by the matrices 

9i 

where K[Y (j)Li ,zi -(j) ]i>_ 1 , j - -  1, 2] is the polynomial algebra generated by the 
(J) z~J) variables yi , . The algebra F(M2(K)) possesses 2-grading in a natural 

( *  0,) form the even part, while manner. Namely its matrices of the type 0 

(0, ,) 
those of the type 0 form the odd part. 

Denote by T2(M2) = T2(M2(K)) the ideal of the graded identities for M2(K). 

LEMMA 3: The relatively free 2-graded algebra K(X)/T2(M2) is isomorphic to 
the algebra F(M2(K)). 

Proo~ The proof is analogous to that for the generic matrices. Denote by e11, 

e12, e21, e22 the usual basis of the vector space M2(K); then eijekt ---- 5jkeit, where 

5jk = 0 i f j  ¢ k and 5jj = 1. Put  Yi = Y~1)e11+y~2)e22 and Zi = z~l)e12+z~2)e21. 

Then define a homomorphism (I): K(X)  -+ F(M2(K)) by (I)(y~) = Y~ and (I)(zi) = 

Z~. An easy calculation shows that ker (I) = T2(M2(K)) and (I) is an isomorphism, 

as required. 

Thus we shall work in the 2-graded algebra F(M2(K))  instead of 

K(X)/T2(M2). The following lemma is a well-known fact (and easy to deduce 

as well). 

LEMMA 4: The graded identities yly2 - y2Yl and ZlZ2Z3 - -  Z3Z2Zl belong to the 

T2-ideal T2 (M2). 

PROPOSITION 5: (a) f ig  C K(X)o then Yig - gY~ e T2(M2(K)) and this graded 
identity follows from the two identities of the previolzs lemma; 
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(b) The relatively free 2-graded algebra K(X) /T~(M2)  is spanned over K by 

1 and by the following monomials: 

Y a ~  Y a ;  " " " Y a k ,  

Y a l  Y a 2  " " " Y a ~  Z c l  Y b l  Yb~  " " " Yb t  , 

Y a l  Y a 2  " " " Y a k  Z c l  Z d l  Zc2  Zd2  • " " Z c m  Z d m  , 

Y a l  Y a 2  " " " Y a k  Z c l  Y b l  Yb2 " " " Ybz Z d l  Zc2  Zd2 " " " Z c m  Z d m  " 

Here a l  < a2 _< "..  _< ak, bl <_ b2 < . . .  < bl, Cl < c2 < - . .  < cm and 

dl <_ d2 < .." < dm, k > O, I > O, m >_ O. In the second type of monomials 

k + l >_ 1; in the fourth, i f  k = 1 = 0 its degree is _> 2, and the "hat" over a 

variable means that it can be missing. 

(c) The monomials of (b) are linearly independent modulo the T2-ideal T2 (M2). 

Proof: The  proof  uses ideas from [5], L e m m a  2. The  s t a tement  of (a) is evident 

since g is an even element and it commutes  with yi modulo  the graded identities 

of M2(K). 

(b) Using (a), one obtains  tha t  every monomia l  f rom K(X) /T2(M2)  is a linear 

combinat ion  of monomials  of the form 

hl(y)Ch2(y)z  z 3...  o 

where h i (y)  and h2 (y) are monomials  in the yi 's.  Due to the identi ty YlY2-  y2Yl, 

we m a y  suppose tha t  the indices of the variables in hi(y) and in h2(y) increase 

(with possible repeti t ions).  Now the identi ty zlz2z3 - z3z2zl yields the rest of 

the s ta tement .  Note tha t  if el > e3 in a monomial ,  then  we use the fact tha t  

Z e l  (h2(Y)Ze2)Ze3 -ze3(h2(Y)Ze2)zel belongs to T2(M2). 
(c) In order to prove the linear independency of the above monomials ,  it is 

sufficient to prove it for every set of mu]t ihomogeneous  monomia ls  (of the same 

multidegree).  I t  is convenient to make the calculat ions in the "generic" 2-graded 

algebra.  Set Yi = Ai, zi = Bi where Ai and Bi are the matr ices  introduced at  

the beginning of this section. Then  

A~ 1A~ 2 . .A~ k ,(1),(1) ~.(1) e ,(2)~(2). o.(2) e 
• ~ u a l  c, a2 " " " ,.°a k 11 ~ -  o a l  a a 2  " " Y a k  22 

and tha t  shows the independency of the monomials  of the first type.  Analogously 

one obtains  

A ~  . .A~B¢~Ab,  ..Ab~ =y~(11). ~'(1)z(1)"(2) (2) . . . .  Yak Cl Ybl "" "Yb, e l 2  

+ v  (2) v(2)z (2)n(1) -. y(~)e21 
~ a l  " " " , ~ a k  C1 ~ c 1  " 
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Thus one can "reconstruct" uniquely the monomial by the above expression. 

Therefore if a multihomogeneous polynomial in these monomials equals 0 in the 

relatively free 2-graded algebra K(X) /T2(M2) ,  all of its coefficients must be zero. 

Finally, we consider the monomials of the last type. Choose a monomial of 

such type that  belongs to K(X)o .  In other words, there is an even number of zi's 

in the expansion of the monomial. In analogy with the above case, one evaluates 

the monomial 

M ---  Y a l  Y a 2  " " " Y a k  Z c l  Y b l  Y b 2  " " " Yb z  Z d l  Zc2 Z d 2  * • • Z c  m Z d  m 

on the matrices Ai and Bi, and one obtains the expression 

y(1) . . . . .  (1)z(1L,(2) . . . . .  (2)z(2)z(1)z(2).. "z(~e11 a l  Yak c l  Ybl Ybl d l  c2 d2 

+y(2) . . . .  (2)Z(2)~,(1)  . . . .  ( 1 ) Z ( 1 ) Z ( 2 ) Z  (1 )  • •  Z ( 2 ) e  
• Yak cl  Ybl " Ybt d l  c2 d2 " Cm 22" 

One reconstructs uniquely from this expression the monomial M. Suppose that 

a multihomogeneous polynomial whose monomials have the same multidegree as 

the one of M, equals 0 in the relatively free algebra K(X) /T2(M2) .  Then one 

obtains a linear combination of matrices of the above type, and this is possible 

only if all its coefficients equal 0. 

The remaining case when M • K ( X ) I  is dealt with in the same manner, and 

thus the proof of the proposition is complete• 

COROLLARY 6 (cf. [5], Lemma 2): Let K be an infinite field, cha rK -- p 

2. Then the 2-graded identities of the a/gebra M2(K) are consequences of the 

identities YlY2 - Y2Yl and zlz2z3 - z3z2zl. 

Proof'. The statement follows from (b) and (c) of the above proposition• 

Remark: It is worth mentioning that the 2-graded identities satisfied by the 

matrix algebra of order two over an infinite field K,  char K ~ 2, are not very 

"interesting" since a basis of the ordinary identities satisfied by this algebra is 

known; see [11]. 

3. The graded identit ies of  MI,I(G) 

In this section we treat the 2-graded identities for the algebra M1,1 = MI,I(G) 

in a manner similar to that of the previous section. We construct a model of the 

corresponding relatively free graded algebra. 

We recall the definition of the free supercommutative algebra; see, for example, 

[2], Section 2. Let Y and Z be two disjoint infinite sets of variables, X = Y t2 Z, 
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and consider the usual grading on K ( X )  assuming the variables in Y even and 

those in Z odd. Then K ( X )  = g ( X ) o  • K ( X ) I .  Given f e K ( X ) z ,  g E 

K ( X ) j  we impose the relations f g  - ( - 1 ) i J g f  = 0 and denote the corresponding 

quotient algebra by K ( Y ;  Z) .  Thus K ( Y ; Z )  = K[Y]  ® G ( Z )  where K[Y]  is 

the ordinary polynomial commutative algebra generated by Y, and G ( Z )  is the 

Grassmann algebra of the K-span of the set Z. The algebra K ( Y ;  Z)  is the free 

supercommutative algebra, see [2], Lemma 1. 

Now consider the sets 

. (j) 
Y = ~Yi I i > - l , j = l ,  2} and Z - -  {z~J) l i >>_ l , j  = l , 2  } 

as generating sets for the free supercommutative algebra. Form the matrices 

(o 
and consider the subalgebra Gen(Ml,~) of M 2 ( K ( Y ;  Z ) )  generated by these ma- 

trices. It has a natural 2-grading defined as follows. The even component consists 

of all matrices of the type f l  1 e 11 + f22 e 22 while the odd consists of f l  2 e 12 + f2 le21, 

f i j  E K ( Y ;  Z) .  Note that according to the rules of multiplication one has f11, 

f22 • K ( Y ;  Z)o and f12, f21 • K ( Y ;  Z ) I .  

It follows from [2], Theorem 2, that the K-algebra generated by the matrices 

Ci = Ai  + Bi  is canonically isomorphic to the relatively free algebra of countable 

rank in the variety of algebras determined by M1,1. A similar reasoning yields 

the following lemma. Its proof repeats verbatim that of the corresponding result 

for M2 (K) from the previous section. 

LEMMA 7: The 2-graded algebra Gen(Ml,1) is isomorphic to the relat ively  free 

algebra o f  co untable rank  F2 (M1,1) in the  varie ty  o f  2-graded algebras de termined 

by MI,1- 

PROPOSITION 8: Let I be the T2-ideal o f  the 2-graded identi t ies for M1,1. Then: 

(a) The polynomials  ylY2 - Y2Yl, z lz2z3 + z3z2zl  • K ( X )  belong to I;  

(b) Consider the canonical project ion K ( X )  --~ K ( X ) / J  where J is the ideal 

o f  2-graded identi t ies generated by YlY2 - Y2Yl and z lz2z3 + z3z2zl .  Ident i fy  the 

variables Yi and zi with their images under this project ion.  Then the monomia ls  

Yal Ya~ " " " Yah, 

Yal Ya~ " " " Yak Zcl Ybl Yb2 " " " Ybt , 

Yal Ya2 " " " Yah Zc~ Zdl Zca Zd2 " " " Zcm Z d  m 

Yal Ya2 " " " Yak Zcl Ybl Yb2 " " " Yb~ Zdl Zc~ Zd~ " • " Zc,~ Zdm 
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span K ( X ) / J .  Here al <_ a2 <_ " "  <_ ak, bl < b2 < " "  < bl, el < c2 < " "  < Cm 

and dl < d2 < " "  < din, k >_ O, l > O, m > O. In the second type o f  monomials  

k + 1 > 1; in the fourth, i f  k = l = 0 its degree is > 2, and the "hat" over a 

variable means that it can be missing. 

(c) The  monomials  from (b) are linearly independent  modulo  the 2-graded 

identities of the algebra M1,1. 

Proof." Part (a) of the proposition is proved by direct calculation, analogously 

to the case of M 2 ( K ) .  Observe that Go is the centre of G, hence YlY2 - Y2Yl is 

indeed 2-graded identity for M1,1. For the second identity one uses the fact that 

glg2g3 + g3g2gl = 0 for every gl, g2, g3 G G1. 

(b) We proceed in the same manner as in Proposition 5 (b), and in order not 

to be (too) boring we omit the details. Notice only that we allow repeated entries 

neither in the sequence ci nor in di. 

(c) The proof repeats verbatim that of Proposition 5 (c) with the only difference 

that we work in the algebra Gen(M~3) instead of the generic matrix algebra. 

The following theorem was proved in [5], Theorem 1, in the case char K = 0. 

THEOREM 9: Let  K be an intlnite field, char K :fi 2. Then the 2-graded identities 

o f  the algebra MI,I(G) follow from the two identities YlY2 - Y2Yl and ZlZ2Z 3 -~ 

Z3Z2Z1. 

Proof: It is an immediate consequence of Proposition 8. 

Remarks:  1. If f C K ( X )  is multihomogeneous and not an identity of M1,1, 

and if the variable zi occurs in the monomials of f ,  then degzi f _< 2. For if one 

has three letters zi in a monomial, at least two of them will be in one of the 

sequences ci or di. But due to the identity ZlZ2Z3 + z3z2z1 : 0 such monomials 

vanish. 

2. In [5] the above theorem was proved using properties of the involution 

* defined on the space of multilinear polynomials; see [10], pp. 17, 18 for the 

precise definition. Since our field may be of positive characteristic, the multilinear 

elements of a T2-ideal might not determine the T2-ideal. In [5] the corresponding 

result is a direct consequence of the properties of the involution * and of the 

description of the basis for the 2-graded identities of M 2 ( K ) .  This holds, since 

if we decompose M2(K) = A0 ® A1 according to the standard grading then 

M1,1 ~ A0 ® Go ® A1 @ G1. 

3. Note that  the polynomial [yP, z] does not vanish on MI,I(G) considered as 

2-graded identity. (Here, y is an even variable, z is an odd one, and p = char K.)  
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Choose, for instance, y = ell q- 2 e 2 2 ,  z = gel2 q- ge21 where eij a r e  the matrices 
from the standard basis of M~(K),  and g # 0 is an arbitrary element of G1. 
Then yP = en  + 2Pe22 and, since 2P # 1 in K, we have [yP, z] = g((1 - 2P)e12 + 

(2 p - 1)e21) # 0. 
Now we observe that we can choose another model for the algebra Gen(Ml,1). 

Let a~ °), b} °) be commuting variables and a~ 1), bl 1) be anticonlmuting ones, and 
• ~ (j)~(J) 

form the free superconmmtative algebra ~ t a i  , o i ] i = 1, 2 , . . . , j  = 0, 1) that 
is freely generated by them. Consider the matrices of the form 

C i : a ~ ° ' ( l o  01)+bl° ) (10  O 1 ) ,  D i : a l D ( O  0 10) +b}l) (01 00) 

and generate an algebra L by 1 and them, assuming that Ci are even, and Di 

are odd elements. Then L is 2-graded algebra,. 

LEMMA 10: The algebra L is isomorphic to Gen(Ml,1). 

Prook Let qo: Gen(Ml,1) --~ L be the homomorphism defined by ~o(Ai) = Ci, 
~0(Bi) = Di; then it is obviously 2-graded isomorphism. 

(o), It is immediate that the matrices a s [en + e22) commute with these of L. 
Denote as B2(L) the subalgebra of L that is generated by 1 and by all elements 
of L such that every even "variable" appears in them in commutators only. Since 

the matrices a~ °) (ell + e22) are central, they will disappear from the polynomials 

in B2(L). 

LEMMA 11: T h e m a t r i c e s E i = b l ° ) (  10 -01) '  D i = (  0dp ) c!1)\~0 ) satisfy the 

following relations: 

EiEj  are central, E iE  i = EjEi ,  

EiDj  = - D j E i ,  D~Dj = -DIDO. 

Proof." It consists of direct (and easy) verification. 

Now let B2(MI,1) be the subalgebra of Gen(Mla)  generated by ] = ell + e22 
and by the polynomials such that every even variable appears in commutators 

only. In other words, B2(MI,1) = B2(X) / (T2(MI , I )n  B2(X)). Then B2(Ml,1) is 
canonically isomorphic to B2(L), and we shall identify B2(MI,,)  and B2(L). 

PROPOSITION 12 (cf. [6], Lemmas 2.2 and 2.3): I f f  E B2(L) is a multihomo- 
geneous polynomial, then f is a linear combination of  elements of  the form 

Ei,~ Ei~ o= . . . E~k D2 ,1 D2 ,~ . . . D~,g( D,~ , D ~  , . . . , D~m ) 
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where il < i2 < . . .  < ik, { j l , j 2 , . . . , j l )  and { n l , n 2 , . . . , n m }  are disjoint sets, 

j l  < j2 < "'" < jl, and the polynomial g is multilinear. 

Proof: First, since e = e n  + e22 is central, there will be no matrices of type 

a}°) (~  0 1 ) i n t h e e x p a n s i o n o f f .  Then one uses the preceding lemma and 

obtains that 

f = E ~ E ~ 2 " " E ~ k h ( D 1 ,  D2 , . . . ,  Dr) 

where h is a multihomogeneous polynomial. If the degree of h in some Di were 

larger than 2, then h would be 2-graded identity for M1,1; see the Remark above. 

Hence we may suppose that the degree of h in any one of its variables is < 2. 

Now write h as a sum of monomials, and split every of these monomials in 

two ascending sequences as was done before, in Proposition 8. If there were two 

equal Di's in one of the sequences in a monomial, then this monomial would 

vanish due to zlz2zl = 0. Therefore, if Di appears twice in the monomial, then 

it must participate once in both sequences. But this means that we can write, up 

to sign, the monomial as . . .  D 2. .  .. Then we use the fact that D~Dj = - D i D  2 

in order to take D 2 to the beginning of the monomial. Finally, observe that 
2 2 2 2 D i Dj = Dj D~ for every i and j .  

4. T h e  g r a d e d  ident i t i es  of  G ® G 

We consider the tensor square of the Grassmann algebra G together with its 

natural 2-grading defined as G®G = (Go ®Go @G1 @G1) @ (Go @G1 @G1 @Go). 
Denote by I the ideal of 2-graded identities satisfied by G@G. First we construct 

a model for the relatively free 2-graded algebra in the variety of 2-graded algebras 

defined by G ® G. 

Let a! °)~ , b! °)~ , c! °)~ , d~ °) be commuting variables and a! D~ , b! 1)~ , c} 1), d~ 1) be 

anticommuting ones, i = 1, 2, . . . .  We consider the free supereommutative 

algebra K ( Y ;  Z) freely generated by the sets y = tair (o), °i'(°), ci(°), d} °) } and Z = 
(i),(1) (i) ,(i)~ 

ai , oi , ci , ai t of even, respectively odd, variables. Set F the subalgebra of 
K(Y;  Z) ® K(Y;  Z) generated by all elements of the form 

y / =  a~ °) ® b} °) + a~ l) ~ v  i62~ h (1), Zi= e~ 0) ® d~ l) + el 1) ® dl 0). 

Then F = Fo @ F1 is 2-graded algebra and the grading on it is the natural one, 

i.e., we consider Y/ as even and Zi as odd variables. 
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LEMMA 13: The 2-graded algebra F is isomorphic (as 2-graded algebra) to 

the relatively free algebra of countable rank K ( X ) / I  in the variety of 2-graded 

algebras defined by G ® G. 

Proof: The proof is rather straightforward. The homomorphism K ( X )  --+ F 

defined by Yi ~+ Yi and zi ~-~ Zi is surjective, and its kernel is equal to I ,  hence 

it is an isomorphism. 

Now we need some elementary properties of the algebra G @ G. It  is easy to 

see that  its centre equals Go ® Go. 

LEMMA 14: The polynomials YlY2 - -  Y2Yl, ZlZ2Z3 ~- z3z2zl are graded identities 

for G @ G. I f  char K = p > 2 then the polynomial yP zl - z l y  p is also a graded 

identity for G @ G. 

Proof: The first polynomial is a 2-graded identity of G®G since Go ®Go@G1 ®G1 

is commutat ive algebra. The second polynomial is also a graded identity for G®G 

as direct calculation shows. 

For the third, let a C Go ® Go ® G1 ® G1; then a = ~ ( e i  ® fi + gi @ hi) where 

ei, f~ E Go, g~, h~ C G1. Therefore 

aP = ® + gf ® = Z ® 

since gP = h p = 0 and the mixed terms vanish due to the binomial coefficients 

that  are divisible by p. The element ~ e p ® f~ is central in G ® G, and this 

completes the proof. 

Remark: Observe that  according to the previous section, the last graded identity 

is not satisfied by the algebra MI,I(G).  Hence it is not a consequence of the first 

two identities of the lemma. 

We shall need the following relations satisfied by G ® G. Their deduction is 

straightforward; one can find it in [6], Lemma 2.2. 

LEMMA 15: The following equalities hold in the algebra G ® G: 

1. z l z z l  = O, Z l U Z l V Z  1 ---- O, Z12Z22 • Z22Z12, Z 2 Z 2  = __Z2Z  2,  

2. tlut2 -- t2utl = 0, zt = - t z ,  

for every t, t l ,  t2 E G1 @ G1, z, Zl, z2 E Go ® G1 ® G1 ® Go, u, v c G @ G. 

Observe that  the graded identities of i tem (1) of the above lemma are con- 

sequences of the identities Yly2 - Y2yl and zlz2z3 + z3z2zl. This actually was 

proved in the previous section, since we established that  they hold in the algebra 

MI,1.  
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We already deduced that  T2(Ml,1) C T~(G ® G). Therefore the relatively free 

2-graded algebra F is a homomorphic image of Gen(Ml,1) and of L. Hence we 

have the following lemma. 

LEMMA 16: The algebra B2(F) = B ~ ( X ) / ( B 2 ( X )  n I) is a homomorphic image 

o B2(L) (and o B2(Oen(Ml,1)) as wel ). 

Proof'. For the proof observe that T2(Ml,1) C_ T2(G ® G) = I, therefore 

B 2 ( X ) / ( B 2 ( X )  N I)  is a homomorphic image of B 2 ( X ) / ( B 2 ( X )  N T2(M1,1)). 

LEMMA 17: Let g i ( z l , z2 , . . . , z~ )  be multilinear polynomials that are linearly 

independent modu10 the T2-ideal T2 (M1,1). Then the polynomials 

il i2 ik 2 2 2 Yl Y2 " ' 'Yk Zn+lZ~+2" ' 'Zn+~gi(zl 'z2 ' ' ' "Zn) 

are linearly independent modulo the T2-ideal T2 (M1,1). 

Proof: Set Yl = E I + E 2 + . " + E i l ,  . . . ,  Yk = E t + l + ' " + E t + ~ k  for t = 

il + • •. + i k - 1 ,  Zn+l  = D n + l  + D n + 2 ,  • • •,  Zn+r = D n + 2 r - 1  -~- D n + 2 r .  This gives 
a non-zero factor, and then one applies the independence of gi- 

In order to proceed we need some combinatorics. Let (il, i2 , . . . ,  in) be a per- 

mutation of the symbols {1, 2 , . . . ,  n}, and assume that 

{ 1 , 2 , . . . , n } = A U B ,  A N B = O .  

One can consider colouring of these symbols in the colours A and B, which is the 

motivation for the terminology used. Then a pair (ia, i~), 1 < a, ~ < n, forms a 

coloured inversion (with respect to the partition A, B) if 1 < a < fl < n, i~ > i~ 

and either a, ~ E A, or a,/~ E B. If q is the number of all coloured inversions in 

(il, i2 , . - . ,  in), then (-1)q is the coloured sign of this permutation with respect 
to the partition A, B. We shall consider the partitions A, B of {1, 2 , . . . ,  n} as 

unordered pairs, i.e., we shall not distinguish (A, B) from (B, A). Then there 

are exactly 2 ~-1 partitions of {1, 2 , . . . ,  n} including the trivial one. Obviously 

the coloured sign of the main (or trivial) permutation (1 ,2 , . . .  ,n) equals 1 for 

all partitions, since it does not contain (ordinary) inversions at all. 

PROPOSITION 18: Let i = (il, i2 , . . . ,  in) be a fixed permutation of (1, 2 , . . . ,  n). 

Then the coloured sign of i equals either 1 for all partitions, or - 1  for all parti- 

tions, or else 1 for 2 n - 2  partitions and - 1  for the remaining 2 n-2 partitions. 

Proof: The proof is an elementary combinatorial reasoning. It is easy to show 

that the transpositions (t, t + 2) change the coloured sign of every permuta- 

tion, for every partition (A, B). In order to prove this fact, one considers all 
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four possibilities for three consecutive symbols in the permutat ion:  all belonging 

to A, i.e., ala2a3; or two to A and one to B, i.e., aia2b, alba2, baia2. Here 

ai ,  a2 E A, b E B. 

Using the above observation it is sufficient to prove the proposi t ion only for 

permutat ions  i such tha t  ii < i3 < . ' .  and i2 < i4 < " ". 

We induct on n, n = 1 and 2 being obvious. For n = 3, we give a table with 

the eoloured signs of all permutat ions  of {1, 2, 3} below. In particular,  it shows 

tha t  the s ta tement  is true for n = 3. 

Permuta t ions  

Part i t ions 

I I] 1231132[2311213]31213211 
123 + - + - + - 

12;3 + + - - + - 

13; 2 + + - + - - 

23; 1 + - + + - - 

Suppose n > 3 and that  the assertion has been proved for all m < n. Let 

i = (il,  i2 , . . . ,  in) and set i' = (ii, i 2 , . . . , / n - i )  the permuta t ion  of n - 1 symbols 

{1, 2 , . . . ,  n} \ { i n }  obtained from i by deleting its last entry. Then  the s ta tement  

of the proposit ion holds for i' due to the induction. Note tha t  either in = n or 

in_ 1 ---- n, since il < i 3  < " "  and i 2  < i4 < ""-. Now we consider two cases for 

i,~-1 and in. 

CASE 1: Assume i,~-1 < in, hence in = n. If  ( A , B )  is a par t i t ion of 

{1, 2 , . . . ,  n} \ { i n }  we form two part i t ions of {1, 2 , . . . ,  n}. These are (AU{i~}, B) 

and (A, B U {in}). The coloured signs of i with respect to these two part i t ions 

will be the same as the coloured sign of i '  with respect to (A, B).  

CASE 2: Let i**-i > in, then i~-1 = n. Hence in-1 forms inversion with in only. 

Set i" = (il, i 2 , . . . ,  in-2,  in). Then  our s ta tement  holds for i". Let (C, D) be a 

part i t ion of {1, 2 , . . . ,  n - 1} and let e be the coloured sign of i" with respect to 

(C, D).  Then we form the part i t ions (CU{n},  D) and (C, DU{n})  of {1, 2 , . . . ,  n}. 

In  one of them i n - i  = n and in belong to different sets of the parti t ion,  hence 

the coloured sign of i with respect to this par t i t ion will be e. Analogously, in the 

other par t i t ion i ~ - i  = n and in a r e  in the same set, and since they do form an 

inversion, this yields coloured sign - e .  

Now both  cases are dealt with, and the proof  of the proposit ion is complete. 

COROLLARY 19: The coloured sign of  a = (n, n - 1 , . . . ,  2, 1) equals 1 for all 

partitions when n - -  1 ( m o d 4 )  a n d - 1  when n -  3 ( m o d 4 ) .  I f  n is even, 

then the coloured sign of a equals 1 for 2 '~-2 partitions and -1  for the rest. 
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Proo~ Suppose {1, 2 , . . . ,  n} = A U B, IAI = a, [BI = b, a + b = n. Then there 

will be q = a(a - 1)/2 + b(b - 1)/2 coloured inversions in a. One has that  

q = (a 2 + b 2 - a -  b)/2 = (n 2 - n ) / 2 - a b = n ( n - 1 ) / 2 - a b .  

If n is odd then one of a and b is even, and this yields the statement for n -= 1 

and 3 (rood 4). 
n j n If n = 2m is even, using that  y~.j_=l(-1) (j)  = 0 we obtain the equality 

E r a - l {  l~jgn~ j=0 ' -  , , j ]  + (1 /2 ) ( -1 )m(m n) = 0. (Note that  in the last case (,~) = (~m) is 

always even.) 

PROPOSITION 20: Let  i = ( i l , i 2 , . . . , i n )  be a permuta t ion  o£ the symbols  

( 1 , 2 , . . . , n )  a n d s u p p o s e i l  < ia < . . .  and i2  < i4 < "" ". I f i  # (1, 2 , . . . , n ) ,  then 

the coloured sign o f  i equals 1 for 2 '~-2 partit ions and - 1  for the remaining 2 n-2 

partit ions of {1, 2 , . . . ,  n}. 

Proof: It  follows from the proof of Proposition 18. We induct on n. In the first 

case considered there, due to the inductive assumption and to i ~ (1, 2 , . . . ,  n) 

we obtain 2 n - 2  times coloured sign 1, and 2 n-2 times coloured sign - 1 .  The 

same holds for the second case. 

Remark:  Note that,  in fact, in the previous statements we gave a combinatorial 

description of the Meson algebras; see, for example, [9], pp. 115 and 264-272. Of 

course, our goal was not the description of these algebras but it came "for free." 

COROLLARY 21: The multilinear monomials  

A 

m i j  -= z i  1 Z j l  z iu  z j 2  • • • z i m  z j m  

where il < i2 < . . .  < ira, j l  < J2 < "'" < j m - 1  < jm,  are linearly independent  

modulo  the graded identities o f  the algebra G ® G. Here, i f  the degree o f  the 

monomial  is odd, zjm is missing. 

Proof'. Suppose on the contrary that they are linearly dependent, and that  

a i j m i j  = 0. Then the latter will be a graded identity for G ® G. Due to the 

homogeneity we can suppose that  all mij  are monomials in zl,  z2, . . . ,  Zk. Sup- 

pose that  ZlZ2 . . .Zk_ lZ  k participates in such a linear combination with nonzero 

coefficient a.  We choose a parti t ion A tO B of the set {1, 2 , . . . ,  k - 1, k} and let 

z~ ~ ei @ 1 whenever i E A,  zj ~-+ 1 ® ej,  j E B.  The evaluation of the combina- 

tion will be 0. Sum up the evaluations for all partitions A and B. The elements of 

G1 @ Go anticommute, and the same holds for Go ® G1. The elements of Go @ G1 



VoL 128, 2002 GRADED IDENTITIES FOR T-PP~IME ALGEBRAS 173 

commute with those of G1 ® Go. Thus one applies the proposition above and 

obtains that  2hc~ = 0 for some positive integer h. This is a contradiction since 

char K ¢ 2. 

COROLLARY 22: Let f ( Y l , . . . ,  Ym, zt . . . .  , z,~) C B2(Ml,1) --- B2(L) be a graded 

polynomial  (Here we use the letters yi for Ei and zi for Di; see the definition of  

L in the previous section.) Then modulo the ideal I of  the graded identities of 

G ® G it equals a polynomial of  the form 

a l  c~2 . C~m z 2 Z 2 . .  Yl Y2 "'Ym il i2 "z2kgJ(ZJ,'ZJ2'' '"ZJ,) 

where {i1, i2 , . . .  , i k } A { j l , j 2 , . . .  ,Jl} = O, il < i2 < . . .  < ik, and the polynomial 

gj is multilinear. I f  char K = p > 0, we impose further ai < p, i = 1, . . . ,  m. 

Furthermore, i f  the multilinear polynomials gj are linearly independent modulo 

I,  then the above polynomials are linearly independent as well. 

Proof: The proof is the same as that  for B2(MI,1). Note that  if a E G1 ® G1, 

then a p = O. 

THEOREM 23: The ideal o f  the 2-graded identities of  the algebra G ® G & gen- 

erated by the polynomials ylY2 - Y2Yl, ZlZ2Z3 ~- z3z2zl, and i f  char K = p > 2, 

b y  y P  z 1 - -  Z l y P l .  

Proof: We already established that  these polynomials are indeed graded identi- 

ties for G ® G. Since the first two of them form a basis for the graded identities 

of Ml,1, we can work in the relatively free algebra determined by them, i.e., in 

Gen(Ml,1). As we showed, it is sufficient to consider only the polynomials such 

that  the even variables appear in them in commutators  only. But in this case 

the last corollary yields the statement of the theorem. 

As a corollary of the last theorem we obtain another proof of the coincidence 

of the T-ideals of the algebras Mxl and G ® G over a field of characteristic 0. 

We note that  this is a "standard" fact. Its known proofs use either the structure 

theory of T-ideals (see [10], p. 24) or the description of the basis of T(G ® G) 

given by Popov, [12] (see [5], Theorem 2), or other deep methods and results (see 

[15], Theorem 4.7). The proof we give is elementary. 

COROLLARY 24: Let char K = 0. Then the algebras M l l  and G ® G are PI  

equivalent. In other words, T ( M l l )  = T(G ® G). 

Proof: Let A and B be two 2-graded algebras over a field K,  A = A0 ® A1 and 

B = Bo @ B1 being the decompositions of A and B into even and odd parts. 
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If A and B satisfy the same 2-graded polynomial identities, then obviously they 

satisfy the same ordinary identities. As we showed in the case of characteristic 

0, the 2-graded identities of Mll  and of G @ G follow from the identities 

YlY2 - Y2Yl = O, z lz2z 3 ~ z3z2zl. 

Therefore the algebras Mll  and G ® G satisfy the same ordinary polynomial 

identities when char K = 0. 

OPEN PROBLEMS. 

1. Determine the ordinary identities satisfied by the algebras M1,1 and G ® G 

over an infinite field of characteristic p > 2. Or (weaker): determine the 

difference between the T-ideMs of these two algebras. 

2. Probably the determination of the weak identities for the algebra M1,1 

would help in finding a basis of the identities for this algebra. (Recall that  

f E K ( X )  is weak identity for M1,1 if it vanishes under substitutions of ma- 

trices fi(ell-~-e22)+g~e12+hie21 where f~ E Go and g~, hi C GI. Sometimes 

these are called matrices with supertrace zero.) It seems plausible that the 

weak identities of M1,1 follow from the weak identities [xl, x2, x3] = 0 and 

[xl,x2][xl,x3][xl,x4] -- 0, at least if c h a r g  # 2 or 3. O. M. Di Vincenzo 

and R. La Scala [19] communicated to us that this is true if char K = 0. 

3. Another interesting problem related to the algebras considered in this paper 

seems to be the following. Describe the possible 2-gradings of the algebras 

M2, Ml l ,  G ® G in terms of the polynomial identities they satisfy. Note 

that this could help in resolving the problem of coincidence of T ( M l l )  and 

T(G ® G) in positive characteristic. 

4. What further information about the identities (ordinary and 2-graded) of 

Mll  and G ® G can be deduced? In this direction, what information can 

the codimension sequences and, more important, the Hilbert series of the 

corresponding relatively free algebras, yield? Note that computing the 

graded codimensions and Hilbert series of these relatively free algebras is a 

simple technical question, since we provided linear bases of these algebras. 
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